48 research outputs found

    A novel compliant surgical robot: Preliminary design analysis

    Get PDF
    A robotic surgical system capable of performing minimally invasive surgery (MIS) is proposed in this paper. Based on the requirements of MIS, a compliant, seven- degrees of freedom (7-DOF) pneumatically actuated mechanism is designed. A remote center of motion (RCM) as a parallelogram mechanism for holding the laparoscopic camera is also developed. The operating workspace of robotic surgical system is determined considering the physical constraints imposed by mechanical joints. The simulation results show that the robotic system meets the design requirement. This research will lay a good foundation for the development of a compliant surgical robot to assist in MIS

    Hydrothermal synthesis of zeolite production from coal fly ash : a heuristic approach and its optimization for system identification of conversion

    Get PDF
    Commercialization of synthetic zeolites has given considerable impetus to optimization of its production routes. The preferred production route involves hydrothermal treatment of coal fly ash in a strong alkali solution. The process involves several parameters, such as reaction temperature, time, the concentration and amount of alkali solution, and silica content in the fly ash, all of which strongly and non-monotonically affect the conversion. We herein perform several experiments with the Kazakhstani fly ash, and obtained a highest conversion of zeolites of 78% using 3 M NaOH at 110 °C. Further, we propose a conversion model using zero-order Takagi-Sugeno fuzzy system to analyze the effect of individual process parameters on conversion, and thereby, the reaction mechanism(s) of zeolite formation. The model is designed and developed, using the data, both from literature and our experiments on Kazakhstani fly ash. The obtained results clearly illustrate that the model accurately predict the conversion percentage of zeolite for a given set of reaction parameters. The model is further optimized to provide accurate inferences and an average deviation between the model predictions and experimental values for zeolite yield is observed to be less than 5%

    Brain–computer interface and assist-as-needed model for upper limb robotic arm

    Get PDF
    https://journals.sagepub.com/doi/10.1177/1687814019875537Post-stroke paralysis, whereby subjects loose voluntary control over muscle actuation, is one of the main causes of disability. Repetitive physical therapy can reinstate lost motions and strengths through neuroplasticity. However, manually delivered therapies are becoming ineffective due to scarcity of therapists, subjectivity in the treatment, and lack of patient motivation. Robot-assisted physical therapy is being researched these days to impart an evidence-based systematic treatment. Recently, intelligent controllers and brain–computer interface are proposed for rehabilitation robots to encourage patient participation which is the key to quick recovery. In the present work, a brain–computer interface and assist-as-needed training paradigm have been proposed for an upper limb rehabilitation robot. The brain–computer interface system is implemented with the use of electroencephalography sensor; moreover, backdrivability in the actuator has been achieved with the use of assist-as-needed control approach, which allows subjects to move the robot actively using their limited motions and strengths. The robot only assists for the remaining course of trajectory which subjects are unable to perform themselves. The robot intervention point is obtained from the patient’s intent which is captured through brain–computer interface. Problems encountered during the practical implementation of brain–computer interface and achievement of backdrivability in the actuator have been discussed and resolved

    State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance

    Get PDF
    https://ieeexplore.ieee.org/document/8759880/keywords#keywordsThe number of elderly populations is rapidly increasing. Majority of elderly people face difficulties while walking because the muscular activity or other gait-related parameters start to deteriorate with aging. Therefore, the quality of life among them can be suffered. To make their life more comfortable, service providing robotic solutions in terms of wearable powered exoskeletons should be realized. Assistive powered exoskeletons are capable of providing additional torque to support various activities, such as walking, sit to stand, and stand to sit motions to subjects with mobility impairments. Specifically, the powered exoskeletons try to maintain and keep subjects' limbs on the specified motion trajectory. The state of the art of currently available lower limb assistive exoskeletons for weak and elderly people is presented in this paper. The technology employed in the assistive devices, such as actuation and power supply types, control strategies, their functional abilities, and the mechanism design, is thoroughly described. The outcome of studied literature reveals that there is still much work to be done in the improvement of assistive exoskeletons in terms of their technological aspects, such as choosing proper and effective control methods, developing user friendly interfaces, and decreasing the costs of device to make it more affordable, meanwhile ensuring safe interaction for the end-users

    Evolutionary optimization using equitable fuzzy sorting genetic algorithm (EFSGA)

    Get PDF
    https://ieeexplore.ieee.org/document/8598717This paper presents a fuzzy dominance-based analytical sorting method as an advancement to the existing multi-objective evolutionary algorithms (MOEA). Evolutionary algorithms (EAs), on account of their sorting schemes, may not establish clear discrimination amongst solutions while solving many-objective optimization problems. Moreover, these algorithms are also criticized for issues such as uncertain termination criterion and difficulty in selecting a final solution from the set of Pareto optimal solutions for practical purposes. An alternate approach, referred here as equitable fuzzy sorting genetic algorithm (EFSGA), is proposed in this paper to address these vital issues. Objective functions are defined as fuzzy objectives and competing solutions are provided an overall activation score (OAS) based on their respective fuzzy objective values. Subsequently, OAS is used to assign an explicit fuzzy dominance ranking to these solutions for improved sorting process. Benchmark optimization problems, used as case studies, are optimized using proposed algorithm with three other prevailing methods. Performance indices are obtained to evaluate various aspects of the proposed algorithm and present a comparison with existing methods. It is shown that the EFSGA exhibits strong discrimination ability and provides unambiguous termination criterion. The proposed approach can also help user in selecting final solution from the set of Pareto optimal solutions

    Analytics of Heterogeneous Breast Cancer Data Using Neuroevolution

    Get PDF
    https://ieeexplore.ieee.org/document/8632897Breast cancer prognostic modeling is difficult since it is governed by many diverse factors. Given the low median survival and large scale breast cancer data, which comes from high throughput technology, the accurate and reliable prognosis of breast cancer is becoming increasingly difficult. While accurate and timely prognosis may save many patients from going through painful and expensive treatments, it may also help oncologists in managing the disease more efficiently and effectively. Data analytics augmented by machine-learning algorithms have been proposed in past for breast cancer prognosis; and however, most of these could not perform well owing to the heterogeneous nature of available data and model interpretability related issues. A robust prognostic modeling approach is proposed here whereby a Pareto optimal set of deep neural networks (DNNs) exhibiting equally good performance metrics is obtained. The set of DNNs is initialized and their hyperparameters are optimized using the evolutionary algorithm, NSGAIII. The final DNN model is selected from the Pareto optimal set of many DNNs using a fuzzy inferencing approach. Contrary to using DNNs as the black box, the proposed scheme allows understanding how various performance metrics (such as accuracy, sensitivity, F1, and so on) change with changes in hyperparameters. This enhanced interpretability can be further used to improve or modify the behavior of DNNs. The heterogeneous breast cancer database requires preprocessing for better interpretation of categorical variables in order to improve prognosis from classifiers. Furthermore, we propose to use a neural network-based entity-embedding method for categorical features with high cardinality. This approach can provide a vector representation of categorical features in multidimensional space with enhanced interpretability. It is shown with evidence that DNNs optimized using evolutionary algorithms exhibit improved performance over other classifiers mentioned in this paper

    Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments

    Get PDF
    Background: A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. Methods: This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Findings: Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Interpretation: Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments

    Single joint robotic orthoses for gait rehabilitation: an educational technical review

    Get PDF
    Robot-assisted physical gait therapy is gaining recognition among the rehabilitation engineering community. Several robotic orthoses for the treatment of gait impairments have been developed during the last 2 decades, many of which are designed to provide physical therapy to a single joint of the lower limb; these are reviewed here. The mechanism design and actuation concepts for these single joint robotic orthoses are discussed. The control algorithms developed for these robotic orthoses, which include trajectory tracking control and assist-as-needed control, are described. Finally, the mechanism design and control of single joint robotic orthoses are discussed. There is a strong need to develop assist-as-needed control algorithms and to perform clinical evaluation of these robotic orthoses in order to establish their therapeutic efficacy
    corecore